The dynamic relaxation form finding method aided with advanced recurrent neural network
نویسندگان
چکیده
منابع مشابه
Recurrent neural network for dynamic portfolio selection
In this paper, the dynamic portfolio selection problem is considered. The Elman network is first designed to simulate the dynamic security behavior. Then, the dynamic covariance matrix is estimated by the cross-covariance matrices. Finally, the dynamic portfolio selection model is formulated. In addition, a numerical example is used to demonstrate the proposedmethod and compare with the vector ...
متن کاملText Embedding with Advanced Recurrent Neural Model
Embedding method has become a popular way to handle unstructured data, such as word and text. Word embedding, providing computational-friendly representations for word similarity, is almost be one of the standard solutions for various text mining tasks. Lots of recent studies focusing on word embedding try to generate a more comprehensive representation for each word that incorporating task-spe...
متن کاملNeural - Network - Aided Portfolio Management
The paper presents the design of an automated system assessing the risk of long-term investments. Although the problem is a relatively standard classification problem, it has specific features, especially as far as input selection is concerned. We show that the combination of "neural" and "standard" statistical methods allows us to obtain results similar to those obtained by a heuristic choice ...
متن کاملDynamic recurrent neural networks
We survey learning algorithms for recurrent neural networks with hidden units and attempt to put the various techniques into a common framework. We discuss fixpoint learning algorithms, namely recurrent backpropagation and deterministic Boltzmann Machines, and non-fixpoint algorithms, namely backpropagation through time, Elman's history cutoff nets, and Jordan's output feedback architecture. Fo...
متن کاملThe Recurrent Control Neural Network
This paper presents our Recurrent Control Neural Network (RCNN), which is a model-based approach for a data-efficient modelling and control of reinforcement learning problems in discrete time. Its architecture is based on a recurrent neural network (RNN), which is extended by an additional control network. The latter has the particular task to learn the optimal policy. This method has the advan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CAAI Transactions on Intelligence Technology
سال: 2023
ISSN: ['2468-2322', '2468-6557']
DOI: https://doi.org/10.1049/cit2.12177